About glucosamine

Glucosamine

Glucosamine is a compound naturally found within the cartilage of our joints, made from chains of sugars and proteins bound together. It acts as one of the body’s natural shock-absorbents and joint lubricants. Glucosamine possesses natural anti-inflammatory and anti-aging properties. One of the most popular supplements taken by people with bone and joint pain glucosamine aids in treating common symptoms of age-related disorders like arthritis and osteoarthritis.

Using glucosamine supplements or obtaining it from natural sources increases the amount of cartilage and fluid that surrounds our joints. This helps prevent joint breakdown and reduces pain.

Glucosamine slows down deterioration of joints when used long-term, plus it offers other benefits that prescription painkillers cannot (such as lowering chronic inflammation and improving digestive health).

Chondroitin

Chondroitin is a natural substance found in the human body and a major component of cartilage, which helps build connective tissue throughout the body. Because it works by retaining water, it helps add lubrication and flexibility to tissue and joints.

Chondroitin used with glucosamine helps lower symptoms associated with loss of collagen and cartilage, which are found in tendons, joints, ligaments, skin and the digestive tract. These conditions can include tendonitis, bursitis and so on. In healthy people, when cartilage becomes damaged due to overuse, injury or inflammation, new cartilage is normally produced to take its place. Unfortunately, as we get older our ability to regenerate lost cartilage and repair damaged connective tissue becomes less efficient.

In both humans and animals, glucosamine and chondroitin stimulate the production of new cartilage and can also help reduce inflammation in the process.

Source: https://draxe.com/chondroitin/

About L-glutamine

L-glutamine is the most abundant amino acid in the bloodstream.

L-glutamine benefits the body in the following ways:

1. Improves gastrointestinal health because it is a vital nutrient for the intestines to rebuild and repair

2. Helps heal ulcers and leaky gut by acting as a Band-Aid for protection from further damage

3. Is an essential neurotransmitter in the brain and helps with memory, focus and concentration (

4. Improves IBS and diarrhoea by balancing mucus production, which results in healthy bowel movements

5. Promotes muscle growth and decreases muscle wasting

6. Improves athletic performance and recovery from endurance exercise

7. Improves metabolism and cellular detoxification

8. Curbs cravings for sugar and alcohol

9. Fights cancer

10. Improves diabetes and blood sugar

Doing approximately one hour of exercise can cause a 40 percent reduction of glutamine in the body. It can also cause suppressed immune function. This has a negative impact on your resistance training and may lead to overtraining syndrome.

Supplementing with L-glutamine allows your muscles to fight and push a bit further, which boosts your strength and helps repair your skeletal muscles.

L-glutamine supplementation makes it possible to recover quicker from intense weight training sessions because it improves muscle hydration. This aids the muscle recovery process and reduces recovery time for wounds and burns.

L-glutamine also burns fat and builds lean muscle mass by helping suppress insulin levels and stabilize blood glucose. This enables the body to use up less muscle mass to maintain blood sugar and insulin sensitivity in the cells. For this reason, L-glutamine benefits diabetics and those with sugar and carb cravings as well.

About the different types of proteins

There are 4 common types of protein:

  • When protein concentrate
  • Whey protein isolate
  • Hydrolysed whey protein
  • Casein protein

All whey proteins are easily digestible, therefore they break down in your body quickly, hence they can be a very essential part of your breakfast (after the fasting hours of your night sleep), and after your workout.

Whey protein concentrate is one of the most basic forms of protein.  This is probably the most common protein for anyone who works out. This is a great starting point for beginners, it’s slightly cheaper than the other types and it does the job. It has around 75-80% of protein in it (which means in a 100gr of powder you get 75-80 gr of protein), and it’s reasonably low in fat and carbs. However some people might have some gastric discomfort from this protein especially if they have any digestive issues already. For those people I recommend they try the other types of protein below.

The next level is the whey protein isolate. This protein has been filtered further than the concentrate, and therefore it’s lower in carbs and fats, lactose has been removed as well, therefore it usually doesn’t give any digestive issues. Its protein content is a bit higher, too, you can expect about 85-90% of protein in 100 gr of powder.

Hydrolysed whey protein is the clearest form of protein. It has no fat or carb content, therefore it’s almost 100% protein (around 90-95%). It’s very quick to absorb in the body.

Casein protein is different from whey protein. It breaks down slower in your body, over the course of 5-7 hours therefore it makes it a great ‘snack’ before you go to sleep. It also has high glutamine content, which is great for recovery.

WAWAN ISO Tamrya is made from EU sourced grass fed Cross-Flow Microfiltered Whey Protein Isolate, which makes it a great choice for breakfast or after workout.

About diabetes – part 1

There are 3 main types of diabetes mellitus:

  • Type 1 Diabetes: results from the pancreas failing to produce enough insulin
  • Type 2 Diabetes: a condition of defective insulin signalling
  • Gestational Diabetes: a condition where women without previously diagnose diabetes exhibit high blood glucose levels during pregnancy.

When insulin isn’t produced or acts ineffectively, glucose remains circulating in the blood, leading to a condition known as hyperglycemia. Long term hyperglycemia can result in the dysfunction and failure of various organs and systems, including the eyes, kidneys, nerves, heart and blood vessels.

The key players in diabetes are the pancreas and the liver.

The pancreas is both an endocrine and exocrine gland.

Exocrine means that it’s a gland that release its contents through a tube from inside to outside the body. It helps with digestion by producing important enzymes that break down food, which allows the body to absorb the nutrients.

The endocrine function primarily involves the secretion of the 2 primary hormones relevant to diabetes management: insulin and glucagon.

Insulin increases the storage of glucose, fatty acids and amino acids in cells and tissues and is considered an anabolic hormone. Insulin is a key player in the storage and use of fuels within the body.

Disorders in insulin production and signalling have widespread and devastating effects on the body’s organs and tissues. Glucagon is a peptide hormone produced by alpha cells in the pancreas. The pancreas releases glucagon when blood sugar levels fall too low. It opposes the action of insulin by raising the concentration of glucose in the blood.

Dietary carbs are not essential, however, the body needs glucose. The brain typically needs about 130 gr of glucose every day. Not all glucose has to come from the diet because the liver has the ability to synthesise it.

The liver serves as a warehouse for glucose storage and production. It can also produce fatty acids under certain conditions.

As blood glucose and insulin levels increase, the liver increases its absorption of glucose. Glucose is stored as glycogen. The amount of glycogen stored depends on circulating insulin and glucose levels. When blood glucose levels drop, insulin production falls. The shortage of insulin signals the liver to release its assets by sending glucose back into the blood to keep the body nourished.

When carb intake is restricted, it lowers blood sugar and insulin levels. As insulin levels fall and energy is needed, fatty acids leave their respected fat cells and enter the bloodstream. From here they’re taken up by specific cells and metabolised. Ketone bodies are molecules created in the liver, that are pushed into the blood stream where they’re utilised by skeletal and heart muscles cells as fuel. Also, the brain begins to use ketones as an alternate fuel source when blood levels are high enough to cross the blood-brain barrier. When this happens a person is said to be in nutritional ketosis.

Ketogenic diets are very popular because they suppress insulin and that seems to be very effective in the treatment and management of obesity and T2D. However the severe restriction of carbs (often below 30 gr) may increase the potential for hypoglycaemia of people with T1D.

Lipogenesis is creating fat within the body from glucose or other substrates. It takes place mostly in the liver. Lipogenesis occurs in the liver during times of calorific excess and overfeeding. The liver converts excess glucose to fatty acids. These fatty acids can be stored in the liver or transported via lipoproteins (carriers) to muscle and fat tissue for future fuel use or storage. The ratio that is stored or used is highly dependent on energy intake vs. energy expenditure.

In a healthy liver, insulin halts the production of glucose and instead promotes glycogen storage or generates fatty acids during times of energy excess.

The liver of a person with T1D has no internal break system. Insulin deficiency allows glucose production in the liver to go uncontrolled leading to hyperglycaemia and ketoacidosis if unmanaged. When there’s not enough insulin available, glucose cannot enter the cells for use as energy. Therefore the liver produces even more glucose in an attempt to provide energy for the starved cells, but because insulin is not available, none of this glucose can enter the cells. It builds up and starves the cells even further. Consequently, administration of insulin medication is needed to facilitate the entry of glucose into cells.

Insulin increases glucose uptake in the liver by facilitating the creation of glycogen and decreases glucose output.

Prolonged elevations in insulin that result from an energy surplus increase the body’s ability to produce fat via the process of lipogenesis.

Source:

Phil Graham: Diabetic Muscle

My message for beginners

A short video for those of you who contacted me on social media asking me questions about how to lose weight or get bigger.

About the hormones: Cortisol

Cortisol is one of the stress hormones that is produced by the adrenal glands in response to stress. Stress increases cortisol levels which can be a good or a bad thing. Cortisol is needed in the body to maintain certain physiological processes during time of stress. Without it the body would be unable to respond to stress effectively.
The functions of cortisol are also important to control mood and well-being, immune cells and inflammation, blood vessels and blood pressure, and to maintain connective tissues like bones, muscles and skin.
With effective cortisol metabolism during the ‘fight or flight’ mechanism we can either run away or fight, because cortisol secretion releases amino acids from the muscles, glucose from the liver and fatty acids from adipose tissue in the blood stream to use for energy. So cortisol is good.

Cortisol-like drugs help with inflammations and certain skin diseases because of its anti-inflammatory and immune-suppressing properties.

When we encounter a stressor, either in a physical or psychological senses, the endocrine system tries to set things right by the coordinated actions of the pituitary and hypothalamus in the brain and the two adrenal glands in the kidney. These hormonal signals involve the epinephrine (adrenaline), norepinephrine, cortisol and numerous intermediary hormones to interact to help regulate important aspects of physiology, like cardiovascular function, energy metabolism, immune-system activity and brain chemistry.

Generally speaking, cortisol turns ‘bad’ when you either have too much of it, or you’re exposed to it on a regular basis.

Unfortunately many people’s adrenal stress response overreacts by secreting too much cortisol. Cortisol stimulates certain metabolic processes that increase concentrations of glucose in the blood. These metabolic effects are:

  • stimulation of gluconeogenesis, that converts amino acids into glucose,
  • mobilization of amino acids from the muscle tissue, so that it can provide the ‘material’ for gluconeogenesis,
  • inhibition of glucose uptake in muscle and adipose tissue, which increases the blood glucose levels even more,
  • and stimulation of fat breakdown in adipose tissue.

Unfortunately the fatty acids that are released by the fat breakdown (lipolysis) reduces the cellular sensitivity to insulin.

Back in the caveman days when a stressor was a tiger or other predator, the stress response was a vital survival technique:

  • a brief increase of energy levels,
  • and hormone levels,
  • and the ability for forceful muscle contractions: the fight or flight mechanism.

Unfortunately nowadays, when we face a stressor, like a deadline at work, or a traffic jam, our bodies undergo the same metabolic stress changes, which leads us to increased disease risks.

The benefits of HIIT training

The benefits of HIIT training

There’s an ongoing debate about cardio: which one is more beneficial? HIIT or steady state cardio? It depends on your goal and even your bodytype. Some people can get away with the mind numbing steady state cardio – which is a lot more comfortable, let’s be honest. However it doesn’t work for everyone. If you have been doing that for quite some time it might have stopped working for you – because let’s be honest, your body will get used to most things and will adapt in time. Then it might be a wise idea to step it up to HIIT cardio.

Anyone can benefit from HIIT cardio: elite athletes and everyday people who just want to lose a bit of weight.

So what are the benefits of HIIT?

#1 When you perform high intensity training, glycogen is your preferred fuel that is stored in your muscles. To do more high intensity workouts we need a bigger reserve of muscle glycogen stores. This will allow you to train harder for longer. In addition it will allow for a greater carbs tolerance which means you can eat more carbs and store them as refuel, instead of fat.

#2 Improved aerobic fitness: your body can take in more oxygen and deliver it to your muscles, enabling you to perform faster for longer.

#3 Greater fat burning: some time ago it was the ‘fat burning zone’ on the cardio machine. If you wanted to burn fat, you had to be in the fat burning zone. HIIT burns more fat, because the quicker you deplete your muscle glycogen stores, the sooner your body will tap into your stored fat for fuel. HIIT training depletes muscle glycogen stores because the main fuel for HIIT is glycogen.

#4 Improved capacity for exercise: if you’re doing high intensity – or I could call it metabolic type – weight training, HIIT can increase your capacity for exercise. By increasing our aerobic capacity we can go harder for longer which can help you burn more calories = lose more weight.

#5 Improved insulin sensitivity: One major risk factor for developing type 2 diabetes is reduced insulin sensitivity. If you have normal insulin sensitivity, then insulin can help you shuttle the carbs into your muscles, instead of your fat cells.

#6 You boost your metabolism and get an afterburn: Resistance training has a different effect on your body opposed to endurance training. Resistance training increases excess post exercise oxygen consumption (EPOS). EPOS describes the calories you burn immediately after the training session, also known as the ‘afterburn’ effect.

If you want to step up your training, want to lose weight or just need a change in your training routine, get in touch!

Bespoke metabolic type resistance training plans are available hello@tamaramakar.me

img_4699-1

Soy: good or bad?

Soy contains 26% protein. It has the highest protein content amongst the plants. It is also the highest quality protein amongst the legumes.
Grains are typically low in lysine, beans are typically low in sulfur, methionine and cysteine. However the level of sulfur amino acids is higher in soy than in other beans.
Soybeans are high in fats, too. Most legumes (except peanut) contains 2-14% of fat, soy contains 31% of fat. Most fats in soy is unsaturated.
A serving of soy provides about 8 gr of dietary fibre. However some soy foods are processed in a way that decreases the fibre content, like tofu or soy milk. Processing soy at a high temperature can denature some of the proteins and reduce their quality.
Soy provides important nutrients: calcium, vitamin B12, iron, magnesium and selenium.

Interestingly, whole soybeans are rarely consumed in Western countries. The majority of soy in the diet comes from the refined products that are processed from the soybeans.

The fatty acids in soybeans are mostly Omega-6 polyunsaturated fats. This can be problematic because too many Omega-6s in the diet can lead to inflammation and all sorts of health issues. For this reason, it is very important to avoid soybean oil (and other vegetable oils high in Omega-6) and processed foods that contain it.

The nutrition composition of soy products depends on the type of soy food. Refined soy products, like soy protein and soy bean oil might not be that nutritious at all.

There is some evidence that soy can lower cholesterol levels, although studies show conflicting results. Men who consume soy are at a lower risk of developing prostate cancer in old age.

Soy contains large amounts of biologically active compounds called isoflavones, which function as phytoestrogens… that is, plant-based compounds that can activate estrogen receptors in the human body. These isoflavones are classified as endocrine disruptors, chemicals that interfere with the normal function of hormones in the body. The key isoflavones in soy are genistein, daidzein and glycitein. This can cause reduced estrogen activity due to the isoflavones blocking the actual, more potent estrogen from binding, or it can lead to an increased estrogen activity due to the isoflavones activating the receptors.

Animal studies show that soy isoflavones can cause breast cancer. There are also human studies showing that soy isoflavones can stimulate the proliferation and activity of cells in the breasts.
This may indicate an increased risk of breast cancer, which is the most common cancer in women.

Even though men have some amount of estrogen, having significantly elevated levels is not normal. Therefore, it seems logical that increased estrogen activity from soy isoflavones could have some effects on men. Many believe that soy can reduce testosterone levels, but the effect appears to be weak and inconsistent.

The isoflavones in soy also function as goitrogens, which are substances that interfere with thyroid function. They can inhibit function of the enzyme thyroid peroxidase, which is essential for production of thyroid hormones.

It is important for women who are pregnant, plan on becoming pregnant, or are breastfeeding, to avoid soy and other sources of endocrine disrupting compounds.

13906960_930662720394382_8118053802157752452_n

How to eat for weight loss

There are so many diets out there, no wonder people get confused which one would suit them better. Atkins diet, bloodtype diet, cabbage soup diet, grapefruit diet, slimming world, weight watchers, ketogenic diet, low fat diet, low GI diet….. and the list goes on. Is losing fat as simple as creating calorie deficit? Most diets say: if your calorie intake is less than what you burn off, you will lose weight. Well, that might be true – to a certain extent, but is it only fat that you will burn off?

A pound of fat equals 3500 calories. A pound of muscle renders 600 calories. So 500 calories deficit a day will give you 3500 calories over a week: 500 x 7 = 3500
However there are 2 ways it can go:
– you will either lose 1 pound of fat (3500 calories)
– or you can lose 6 pounds of muscle (6 x 600 = 3600 calories)
 Obviously you want to avoid losing muscle tissue. That’s why it is important that you pay attention to the correct calorie deficit based on your current bodyfat levels and activity level. If you have a higher % of bodyfat, you can get away with a larger deficit in the early stages of your diet. But if you have a low(er) % of bodyfat, the calorie deficit needs to be adjusted to avoid losing muscle tissue. In your cutting diet, the type of protein, carb and fat has to be considered as well as how the body processes them.

1 gr of protein = 4 calories,

1 gr of carbs = 4 calories and
1 gr of fat = 9 calories.
 In general, high glycemic carbs create a large, temporary rise in blood sugar because they’re quickly digested. Low GI carbs create a lower rise because they’re slower digested.

A rapid blood sugar rise means:

– more insulin is released. A high insulin level promotes quick storage of sugar in muscle and liver. It also inhibits the hormone glucagon which normally tells the body to burn stored fat. Obese people tend to be sugar burners, they mainly burn stored glycogen. Their forthcoming meals restore glycogen (especially if it’s high GI) and the circle goes on, therefore they never get to burn stored bodyfat, they just store more and more.
– Blood sugar levels drop quickly, leaving you feel hungry sooner, so your body needs fuel again. The glucagon is still in short supply, therefore the body does not tap into the stored fat for supply. You feel hungry and will eat again – needlessly, which will lead to increased fat gain over time.

 Moderate and high glycemic foods are recommended after exercise when the plasma glucose concentrations are elevated and it facilitates muscle glycogen replenishment.
For tailor made nutrition and training plans contact me on hello@tamaramakar.me, KIK: tamaramakar

Answering some common questions 1.

I have been receiving a few questions related to my previous posts and in general. I will answer them on here regularly, so keep them coming.

What are electrolytes:

Electrolytes are mineral salts dissolved in the body’s fluid. They include:

* sodium,
* chloride,
* potassium and
* magnesium,
and help to regulate the fluid balance between different body compartments (for example, the amount of fluid inside and outside a muscle cell), and the volume of fluid in the bloodstream.

The water movement is controlled by the concentration of electrolytes on either side of the cell membrane. For example, an increase in the concentration of sodium outside a cell will cause water to move to it from inside the cell. Similarly, a drop in sodium concentration will cause water to move from the outside to the inside of the cell. Potassium draws water across a membrane, so a high potassium concentration inside cells increases the cell’s water content.

 

What are glucose polymers and maltodextrins?
Between a sugar (1– 2 units) and a starch (several 100,000 units), although
closer to the former, are glucose polymers (maltodextrins). These are chains
of between 4 and 20 glucose molecules produced from boiling corn-starch
under controlled commercial conditions.
The advantage of using glucose polymers instead of glucose or sucrose in a
drink is that a higher concentration of carbohydrate can be achieved (usually
between 10 and 20 g/ 100 ml) at a lower osmolality.

 

What are multiple transportable carbohydrates?
This term refers to a mixture of carbohydrates (e.g. glucose and fructose;
maltodextrin and fructose) in sports drinks. These carbohydrates are
absorbed from the intestine by different transporters, and using a mixture
rather than a single type of carbohydrate in a sports drink overcomes the
usual limitation of gut uptake of carbohydrate.

 

I would like to bulk up, how can I do that?
As you probably know, putting on muscle (or shredding fat) lies in your diet/nutrition. If you’d like to put on muscle mass, first thing you need to do is to revise your protein intake. Do you know how much protein you take in? 100 gr of chicken breast contains 25-30 gr protein, 100 gr of white fish has about 24 gr, 100 gr of steak has about 25 gr of protein, 100 gr cottage cheese about 10 gr. Endurance athletes usually take about 1.2 – 1.7 gr protein/kg of bodyweight/day, and bodybuilders take a lot more than that to build muscle. Then you need to revise your carbohydrate intake as well. Carbohydrates/muscle glycogen is the primary energy source when training. If you don’t have enough muscle glycogen, your performance will suffer (less intensity, lighter weights = less muscle), and your body will use amino acids to convert to glycogen (less muscle building). The amount of carb you need to eat depends on a lot of factors: your insulin sensitivity and the rate of your metabolism. People with high metabolism can eat more carbs, and people with high insulin sensitivity (and low metabolism) have to watch their carb intake otherwise they will put on a lot of fat as well along with the muscle.

Keep the questions coming, I will reply to them regularly on here!
hello@tamaramakar.me

DSC_5235