About the different types of proteins

There are 4 common types of protein:

  • When protein concentrate
  • Whey protein isolate
  • Hydrolysed whey protein
  • Casein protein

All whey proteins are easily digestible, therefore they break down in your body quickly, hence they can be a very essential part of your breakfast (after the fasting hours of your night sleep), and after your workout.

Whey protein concentrate is one of the most basic forms of protein.  This is probably the most common protein for anyone who works out. This is a great starting point for beginners, it’s slightly cheaper than the other types and it does the job. It has around 75-80% of protein in it (which means in a 100gr of powder you get 75-80 gr of protein), and it’s reasonably low in fat and carbs. However some people might have some gastric discomfort from this protein especially if they have any digestive issues already. For those people I recommend they try the other types of protein below.

The next level is the whey protein isolate. This protein has been filtered further than the concentrate, and therefore it’s lower in carbs and fats, lactose has been removed as well, therefore it usually doesn’t give any digestive issues. Its protein content is a bit higher, too, you can expect about 85-90% of protein in 100 gr of powder.

Hydrolysed whey protein is the clearest form of protein. It has no fat or carb content, therefore it’s almost 100% protein (around 90-95%). It’s very quick to absorb in the body.

Casein protein is different from whey protein. It breaks down slower in your body, over the course of 5-7 hours therefore it makes it a great ‘snack’ before you go to sleep. It also has high glutamine content, which is great for recovery.

WAWAN ISO Tamrya is made from EU sourced grass fed Cross-Flow Microfiltered Whey Protein Isolate, which makes it a great choice for breakfast or after workout.

About diabetes – part 1

There are 3 main types of diabetes mellitus:

  • Type 1 Diabetes: results from the pancreas failing to produce enough insulin
  • Type 2 Diabetes: a condition of defective insulin signalling
  • Gestational Diabetes: a condition where women without previously diagnose diabetes exhibit high blood glucose levels during pregnancy.

When insulin isn’t produced or acts ineffectively, glucose remains circulating in the blood, leading to a condition known as hyperglycemia. Long term hyperglycemia can result in the dysfunction and failure of various organs and systems, including the eyes, kidneys, nerves, heart and blood vessels.

The key players in diabetes are the pancreas and the liver.

The pancreas is both an endocrine and exocrine gland.

Exocrine means that it’s a gland that release its contents through a tube from inside to outside the body. It helps with digestion by producing important enzymes that break down food, which allows the body to absorb the nutrients.

The endocrine function primarily involves the secretion of the 2 primary hormones relevant to diabetes management: insulin and glucagon.

Insulin increases the storage of glucose, fatty acids and amino acids in cells and tissues and is considered an anabolic hormone. Insulin is a key player in the storage and use of fuels within the body.

Disorders in insulin production and signalling have widespread and devastating effects on the body’s organs and tissues. Glucagon is a peptide hormone produced by alpha cells in the pancreas. The pancreas releases glucagon when blood sugar levels fall too low. It opposes the action of insulin by raising the concentration of glucose in the blood.

Dietary carbs are not essential, however, the body needs glucose. The brain typically needs about 130 gr of glucose every day. Not all glucose has to come from the diet because the liver has the ability to synthesise it.

The liver serves as a warehouse for glucose storage and production. It can also produce fatty acids under certain conditions.

As blood glucose and insulin levels increase, the liver increases its absorption of glucose. Glucose is stored as glycogen. The amount of glycogen stored depends on circulating insulin and glucose levels. When blood glucose levels drop, insulin production falls. The shortage of insulin signals the liver to release its assets by sending glucose back into the blood to keep the body nourished.

When carb intake is restricted, it lowers blood sugar and insulin levels. As insulin levels fall and energy is needed, fatty acids leave their respected fat cells and enter the bloodstream. From here they’re taken up by specific cells and metabolised. Ketone bodies are molecules created in the liver, that are pushed into the blood stream where they’re utilised by skeletal and heart muscles cells as fuel. Also, the brain begins to use ketones as an alternate fuel source when blood levels are high enough to cross the blood-brain barrier. When this happens a person is said to be in nutritional ketosis.

Ketogenic diets are very popular because they suppress insulin and that seems to be very effective in the treatment and management of obesity and T2D. However the severe restriction of carbs (often below 30 gr) may increase the potential for hypoglycaemia of people with T1D.

Lipogenesis is creating fat within the body from glucose or other substrates. It takes place mostly in the liver. Lipogenesis occurs in the liver during times of calorific excess and overfeeding. The liver converts excess glucose to fatty acids. These fatty acids can be stored in the liver or transported via lipoproteins (carriers) to muscle and fat tissue for future fuel use or storage. The ratio that is stored or used is highly dependent on energy intake vs. energy expenditure.

In a healthy liver, insulin halts the production of glucose and instead promotes glycogen storage or generates fatty acids during times of energy excess.

The liver of a person with T1D has no internal break system. Insulin deficiency allows glucose production in the liver to go uncontrolled leading to hyperglycaemia and ketoacidosis if unmanaged. When there’s not enough insulin available, glucose cannot enter the cells for use as energy. Therefore the liver produces even more glucose in an attempt to provide energy for the starved cells, but because insulin is not available, none of this glucose can enter the cells. It builds up and starves the cells even further. Consequently, administration of insulin medication is needed to facilitate the entry of glucose into cells.

Insulin increases glucose uptake in the liver by facilitating the creation of glycogen and decreases glucose output.

Prolonged elevations in insulin that result from an energy surplus increase the body’s ability to produce fat via the process of lipogenesis.

Source:

Phil Graham: Diabetic Muscle

How to train for weight loss

In my previous article I outlined a few points for a diet plan for weight loss. As you probably have heard this phrase a million times by now: abs are made in the kitchen. About 80% of your weight loss efforts will come down to your diet.You can estimate how much energy you burn during exercise, but the rule of thumb is that the more intense the exercise, the more calories are burnt.

For eg for a 150 lb person (69 kg) 30 mins of:

  • walking at 3 miles/hr burns 150 kcal
  • walking at 4.5 miles/hr burns 233 kcal
  • martial arts burn 401 kcal.

More often than not you see people in the gym, plodding away on the treadmill, crosstrainer or bike at a speed that allows them to play on their phones or talk to their friends.
Just to compare the calories and how much it takes to burn them off:
 A Krispy Kreme chocolate ice donut with Kreme filling is 360 Kcal. That equals to =

  • 94 mins walking
  • 41 mins jogging or
  • 48 mins cycling

A double cheese burger at McDonald’s is 440 Kcal. That equals to =

  • 115 mins walking
  • 50 mins jogging or
  • 59 mins cycling

And usually when people go to McDonald’s or Krispy Kreme they don’t just have 1 donut or 1 burger.
So my point is: with a balanced diet it’s easier to ‘keep in shape’ than doing a yo-yo diet.

If you want to maximise the exercise component in order to shed body fat, choose exercise modes that are physically demanding as they use more energy. So instead of walking on the treadmill at 3-4 mph for 45 mins, do a HIIT training for 20-25 mins. With this type of training – even though you’re out of your ‘fat burning zone’, but you deplete your muscle glycogen stores and your body will be forced to tap into the adipose tissue for fuel. We have an almost unlimited supply of energy in the form of stored fat. Marathon runners fatigue due to glycogen depletion, not fat.
You will also burn more fat post workout, during your recovery, if you engage in high intensity training.
 And last but not least: strength train! Girls, boys, everyone. The more muscle you have the higher your metabolism is. Building muscle and strength is intense. Intense training depletes glycogen therefore more stored fat is used for energy. Makes sense, doesn’t it?

Answering some common questions 1.

I have been receiving a few questions related to my previous posts and in general. I will answer them on here regularly, so keep them coming.

What are electrolytes:

Electrolytes are mineral salts dissolved in the body’s fluid. They include:

* sodium,
* chloride,
* potassium and
* magnesium,
and help to regulate the fluid balance between different body compartments (for example, the amount of fluid inside and outside a muscle cell), and the volume of fluid in the bloodstream.

The water movement is controlled by the concentration of electrolytes on either side of the cell membrane. For example, an increase in the concentration of sodium outside a cell will cause water to move to it from inside the cell. Similarly, a drop in sodium concentration will cause water to move from the outside to the inside of the cell. Potassium draws water across a membrane, so a high potassium concentration inside cells increases the cell’s water content.

 

What are glucose polymers and maltodextrins?
Between a sugar (1– 2 units) and a starch (several 100,000 units), although
closer to the former, are glucose polymers (maltodextrins). These are chains
of between 4 and 20 glucose molecules produced from boiling corn-starch
under controlled commercial conditions.
The advantage of using glucose polymers instead of glucose or sucrose in a
drink is that a higher concentration of carbohydrate can be achieved (usually
between 10 and 20 g/ 100 ml) at a lower osmolality.

 

What are multiple transportable carbohydrates?
This term refers to a mixture of carbohydrates (e.g. glucose and fructose;
maltodextrin and fructose) in sports drinks. These carbohydrates are
absorbed from the intestine by different transporters, and using a mixture
rather than a single type of carbohydrate in a sports drink overcomes the
usual limitation of gut uptake of carbohydrate.

 

I would like to bulk up, how can I do that?
As you probably know, putting on muscle (or shredding fat) lies in your diet/nutrition. If you’d like to put on muscle mass, first thing you need to do is to revise your protein intake. Do you know how much protein you take in? 100 gr of chicken breast contains 25-30 gr protein, 100 gr of white fish has about 24 gr, 100 gr of steak has about 25 gr of protein, 100 gr cottage cheese about 10 gr. Endurance athletes usually take about 1.2 – 1.7 gr protein/kg of bodyweight/day, and bodybuilders take a lot more than that to build muscle. Then you need to revise your carbohydrate intake as well. Carbohydrates/muscle glycogen is the primary energy source when training. If you don’t have enough muscle glycogen, your performance will suffer (less intensity, lighter weights = less muscle), and your body will use amino acids to convert to glycogen (less muscle building). The amount of carb you need to eat depends on a lot of factors: your insulin sensitivity and the rate of your metabolism. People with high metabolism can eat more carbs, and people with high insulin sensitivity (and low metabolism) have to watch their carb intake otherwise they will put on a lot of fat as well along with the muscle.

Keep the questions coming, I will reply to them regularly on here!
hello@tamaramakar.me

DSC_5235