About glucosamine

Glucosamine

Glucosamine is a compound naturally found within the cartilage of our joints, made from chains of sugars and proteins bound together. It acts as one of the body’s natural shock-absorbents and joint lubricants. Glucosamine possesses natural anti-inflammatory and anti-aging properties. One of the most popular supplements taken by people with bone and joint pain glucosamine aids in treating common symptoms of age-related disorders like arthritis and osteoarthritis.

Using glucosamine supplements or obtaining it from natural sources increases the amount of cartilage and fluid that surrounds our joints. This helps prevent joint breakdown and reduces pain.

Glucosamine slows down deterioration of joints when used long-term, plus it offers other benefits that prescription painkillers cannot (such as lowering chronic inflammation and improving digestive health).

Chondroitin

Chondroitin is a natural substance found in the human body and a major component of cartilage, which helps build connective tissue throughout the body. Because it works by retaining water, it helps add lubrication and flexibility to tissue and joints.

Chondroitin used with glucosamine helps lower symptoms associated with loss of collagen and cartilage, which are found in tendons, joints, ligaments, skin and the digestive tract. These conditions can include tendonitis, bursitis and so on. In healthy people, when cartilage becomes damaged due to overuse, injury or inflammation, new cartilage is normally produced to take its place. Unfortunately, as we get older our ability to regenerate lost cartilage and repair damaged connective tissue becomes less efficient.

In both humans and animals, glucosamine and chondroitin stimulate the production of new cartilage and can also help reduce inflammation in the process.

Source: https://draxe.com/chondroitin/

About L-Carnitine

Taking L-Carnitine is known to:

  • Improve high-intensity work capacity
  • Increase athletic performance
  • Speed your recovery from intense exercise
  • Make your brain work better

Carnitine is an amino acid composite that is made of lysine and methionine. It is responsible for the transport of fat into the cells to be used for energy, therefore your body becomes more efficient in processing fuel and it will increase your energy levels.

Elevating carnitine will improve physical performance by burning more fat, sparing glycogen, clearing muscle lactate, and optimizing hormone levels.

For Carnitine to be effective, you need to make sure you have enough Omega-3 in your body. Omega-3s increase metabolic rate by increasing cell activity and fat burning. Carnitine is the delivery system for long chain fatty acids therefore the less carnitine you have in your body, the fewer fatty acids get into the cells, and you don’t burn them for energy. Instead they’re stored as fat. By elevating carnitine fat burning increases, you will have more energy and feel more motivated.

Carnitine fights visceral belly fat, that is known to be the toughest fat to loose. Raising your carnitine levels will fight this visceral belly fat gain because it increases fat burning.

Higher muscle carnitine levels help decrease pain, muscle damage and markers of metabolic stress from high intensity exercise by reducing lactic acid production, therefore you can have a greater work production because it will not feel as physically difficult.

Taking carnitine will also support an anabolic response to exercise by up-regulating the androgen receptors, which will speed up your recovery.

Carnitine can help prevent type 2 diabetes because of how it improves fat metabolism. It can counter the diseases of metabolic syndrome by supporting cardiovascular health while inducing fat loss.

For athletes: 9 science based ways to lose weight

Recently I’ve come across an article that talks about 9 science-based ways for athletes to lose weight. When you think about it, it’s always more difficult to lose weight when you’re always training, always eating clean. Humans need a certain amount of bodyfat to maintain basic functions. Too much bodyfat – however – can negatively affect an athlete’s performance. So what can athletes do to ‘step up’ their weight loss to be in prime condition and shape?

  1.  The first point this article suggests is to lose weight off season. We are talking about b athletes in general. It does make sense to try and lose the excess bodyfat offseason because it’s very difficult to reach peak fitness while dieting. When you’re not eating enough calories, your athletic perfomance will suffer. Losing weight offseason will give you more time to lose the excess bodyfat as well, so that you don’t have to rush the fat loss and can stick to the healthy pace of 0.5 kg / week – minimising the muscle loss.
  2. Avoid crash diets. I think we don’t really need to prove this point, athletes know that they need a certain amount of calories to be able to perform at the training sessions. Also drastically reducing your caloric intake will affect your metabolism and hormonal balance. Athletes should only cut their calories by no more than 300-500 kcal a day.

  3. Eat less sugar and more fibre. Low carb diets are proven to be the best for fat loss. However restricting the carb intake too much will affect your athletic performance. To reduce the carb intake cut out added sugars, and avoid cane juice, dextrin, maltodextrin, barley malt, caramel, fruit juice concentrate, fruit juice crystals and any type of syrup. Instead increase your intake of vegetables high in fibre.

  4. Increase your protein intake. Protein promotes fat loss in several ways: high protein diets increase feelings of fullness and the number of calories burnt through digestion. High protein diets also prevent muscle loss during periods of weight loss. Therefore athletes restricting their calories to lose weight should eat between 1.7 – 2.8 gr protein / kg of bodyweight / day.

  5. Spread protein intake throughout the day. 20-30 gr protein per meal is sufficient to stimulate muscles to produce protein for the following 2-3 hrs. Eating a snack containing 40 gr protein before bed can increase muscle protein synthesis during night. This may help prevent some of the muscle loss expected during sleep.

  6. Refuel well after training. Eating the right foods after competing or training is very important for the athletes, especially when trying to lose bodyfat. Proper refuelling is very important especially on days when you have more than 1 events with less than 8 hours recovery time. Carbs with protein can speed up recovery time and promote protein production in your muscles.

  7. Strength training can also help holding on to the muscle when trying to lose bodyfat. Research shows that both protein intake and strength training stimulate muscle protein synthesis and combining the two can produce an even better effect.

  8. After your diet, increase your calories gradually. It may be tempting to start eating normally again after you’ve reached your desired body fat percentage, but that would lead you to gain bodyfat back. Gradually increasing your caloric intake can help restore your hormone levels and metabolism better, minimizing the weight gain.

  9. Here are some other ways you can achieve weight loss:

    • measuring your portions and keeping track of what you eat is scientifically proven to help you get better results.
    • drinking before consuming a meal can help you consume 22% less calories
    • eat slowly, aim to take at least 20 mins for a meal
    • avoid alcohol
    • get enough sleep, not enough sleep can increase hunger and appetite by 24%. Not getting enough sleep will also affect your athletic performance.
    • reduce your stress. Having high stress levels will increase cortisol levels which promotes food cravings and drive to eat. Mental and physical stress can also prevent proper recovery.

img_4909

About Creatine

Creatine is a protein that is naturally made of 3 amino acids: arginine, glycine and methionine. It can also be found in meat and fish, and can be taken as a supplement.

Creatine combines with phosphorus to form phosphocreatine (PC) in the muscle cells. This fuels your muscles during high intensity training, such as sprinting or lifting weights. Creatine raises PC levels around 2%, which means you can sustain all out effort for longer and recover faster between sets.

Protein promotes muscle hypertrophy and protein manufacture. Lot of studies show that short-term creatine supplementation increases body mass. Studies found that creatine supplements improved strength, the number of repetitions performed to fatigue, and the ability to perform repeated sprints.

How does creatine work?

The gains observed are partly due to the increase of cell volume and partly muscle synthesis.

Creatine cause water to move across cell membranes. When muscle cell creatine concentration goes up, water is drawn into the cell an effect that boosts the thickness of muscle fibres by about 15%. The water content of muscle fibres stretches the cell’s outer sheaths.

In aerobic sports there is less evidence for creatine use. This is probably due to the fact the PC energy system is less important during endurance training.

Who should use it?

If you train with weights, or do any sports that includes high-intensity movements (sprints, jumps or throws: rugby, football, hockey, gymnastics, tennis etc), creatine supplements may help increase your performance, strength and muscle mass.

Taking carbs with creatine can be beneficial, as carb intake increases insulin which helps creatine uptake by the muscle cells.

Creatine monohydrate is the most widely available form of creatine. It comprises a molecule of creatine with a molecule of water attached to it. It requires a loading phase. One way to do it is to take about 20-25 gr / day in 4-5 doses for 5 days. After the loading phase the dosage is 2 gr / day.

The side effects of Creatine:

The main side effect is weight gain. This is partly due to the extra water in the muscle cells, and party to increased muscle tissue. It could be disadvantageous in sports where there’s a critical ratio of bodyweight and speed (like running), or in sports where there are weight categories. 

IMG_4878

About L-Carnitine

L-Carnitine is one of the naturally occurring amino acids. It is often used as a weight loss supplement. It transports the fatty acids into the cells’ mitochondria where it gets burnt off to use as energy. Your body can produce L-Carnitine from the amino acids lysine and methionine. You can also obtain small amount of L-Carnitine from your diet by eating meat or fish.

L-Carnitine L-Tartrate is the most common form of L-Carnitine that is used in most sport supplements, because of its fast absorption and it may help with muscle soreness and recovery.

In human studies, taking acetyl-L-carnitine daily helped reverse the decline in brain function associated with Alzheimer’s and other brain diseases.

Some studies have demonstrated a potential benefit for reducing blood pressure and the inflammatory process associated with heart disease.

L-carnitine may benefit:

Recovery:It may improve exercise recovery.

Muscle oxygen supply: It may increase oxygen supply to the muscles

Stamina: It may increase blood flow and nitric oxide production, helping delay the “burn” and reduce fatigue

Muscle soreness: It may reduce muscle soreness after exercise

Red blood cell production: It may increase the production of red blood cells, which transport oxygen throughout your body and muscles.

L-carnitine has also been shown to reduce symptoms of type 2 diabetes and its associated risk factors.

The main foods high in L-Carnitine are:

  • – beef
  • – pork
  • – fish
  • – chicken
  • – milk

 L-Carnitine has a greater absorption rate from food than from supplements.

Doses of 2 grams or less per day seem to be well tolerated and safe for most people. Some people have reported nausea or other digestive side effects, but no serious issues have been found.

IMG_4857

About caffeine

Caffeine was once classed as a banned substance but was removed from the World Anti-Doping Agency prohibited list in 2004. Caffeine is a stimulant and has pharmacological action on the body therefore is classed as a drug rather than a nutrient.
Caffeine is found in everyday drinks and foods, such as coffee, black tea, green tea, cola, herbs such as guarana, both dark and white chocolate and it is added to a number of energy drinks and sports drinks and gels. 
Caffeine acts on the central nervous system, increasing alertness and concentration. These effects reduce the perception of fatigue and allow exercise to be maintained at a higher intensity for a longer period. 
Large number of studies show that caffeine intake can enhance performance at doses of 1-3mg/kg. There appears to be little increase in performance above 3mg/kg. for a 70kg person, this would be 210mg = 2 cups of coffee or 2 cans of caffeinated energy drinks.
Performance benefits occur soon after consumption, so caffeine may be consumed just before exercise, spread throughout exercise or late in exercise as fatigue is beginning to occur.
Although caffeine is a diuretic, a daily intake of less than 300mg caffeine results in no larger urine output than water. Taking caffeine regularly builds up your caffeine tolerance so you experience smaller diuretic effects.
Caffeine consumption likely causes a short-term spike in blood pressure after consumption, with the spike being more pronounced in those who don’t normally ingest caffeine and in those with hypertension. However, the evidence concerning the long-term effects of caffeine and caffeinated beverages on blood pressure is mixed.
Caffeine may raise eye pressure, but only in those who have pre-existing eye conditions like glaucoma.
Coffee contains oily substances called diterpenes, and the 2 main types are cafestol and kahweol that increase the cholesterol levels. Coffee filters trap most of the cafestol and kahweol though, so instant or filter coffee don’t contain much of these, only boiled coffee. 

Different fuel sources of the body

Our food choices supply the energy for our bodies to continue to function properly. These energy sources are: carbohydrate, protein and fats. The body can store these fuels in a form that allows immediate source of energy. Carbohydrates are readily broken down to glucose, the body’s main energy source. Glucose can be used immediately as fuel, or can be sent to the muscles and liver to be stored as glycogen. During exercise muscle glycogen is converted back into glucose. The liver converts its glycogen back into glucose, too, however it is released into the bloodstream to maintain your blood sugar levels. Blood glucose is also the main fuel for the brain when you rest as well as when you exercise. The body constantly uses and replenishes its glycogen stores.
The amount of energy the body can store is limited however. The body can store approximately 1800 – 2000 kcal worth of energy, enough to fuel about 90-120 min high intensity exercise. As we exercise, we gradually deplete our muscle glycogen stores, and blood glucose plays an increasingly important role in meeting the body’s energy demands. When the liver is also depleted of glycogen, you experience hypoglycaemia (low blood sugar) when your performance drops. You can avoid that by consuming carbohydrates during prolonged and high intensity exercise.
 Fat is the body’s most concentrated energy source. During exercise stored fat in the body is broken down into fatty acids. These fatty acids are transported through blood into the muscles for fuel. This process is slower than the mobilization of carbohydrates for fuel. Fat is also stored within the muscles where it can be accessed easier during exercise. In order for fat to fuel exercise, sufficient oxygen must be simultaneously consumed.

 As for protein, our bodies use protein to build, maintain and repair body tissues as well as synthesize important enzymes and hormones. Protein meets only 5 % of the body’s energy needs. In some situations, however, such as when we eat too few calories daily or not enough carbohydrate, as well as during latter stages of endurance exercise, when glycogen reserves are depleted, skeletal muscle is broken down and used as fuel to access certain amino acids that can be converted into glucose.

For bespoke training and nutrition plan contact me on hello@tamaramakar.me

Psychology of Supplements

What is a dietary supplement?

A dietary supplement is a product intended for ingestion that contains a “dietary ingredient” intended to add further nutritional value to (supplement) the diet. A “dietary ingredient” may be one, or any combination, of the following substances:

  • a vitamin
  • a mineral
  • an herb or other botanical
  • an amino acid
  • a dietary substance for use by people to supplement the diet by increasing the total dietary intake
  • a concentrate, metabolite, constituent, or extract

Dietary supplements may be found in many forms such as tablets, capsules, softgels, gelcaps, liquids, or powders. Some dietary supplements can help ensure that you get an adequate dietary intake of essential nutrients; others may help you reduce your risk of disease.

It should be noted that any claims a manufacturer or individual makes about a supplement might change its classification.

Researchers have also differentiated “nonvitamin, nonmineral supplements” (NVNM) as those primarily consisting of herbal, botanical, protein/amino acid, brewer’s yeast, and shark cartilage and a variety of other plant-based and nonplant dietary supplements such as enzymes and fish oil.

In competitive sports specifically, there are both “accepted” and “illegal/banned” substances, including some supplements.

In an interesting quandary for the field of performance enhancement, many supplements marketed to athletes contain banned substances – either overtly or because of impurities in these supplements. Researchers bought supplements from 215 suppliers in 13 countries testing 634 nonhormonal supplements. A meaningful % of the supplements (14.8%) contained substances that would lead to a positive drug test.

Problems also abound for individuals who use supplements to achieve added weight loss and/or muscle gain (or improved recovery after workouts) from their exercise programs.

Considering a worldwide ongoing obesity epidemic, it is not surprising that many individuals are seeking new ways to lose weight. Supplements promise, though probably seldom deliver, a magic bullet of sorts: easy, hassle-free weight loss with little in the way of dietary sacrifice.

Athletes undoubtedly account for a large portion of those who use dietary supplements, and there are a variety of products that are marketed directly at competitive athletes. Elite athletes tend to take supplements more commonly than college or high school athletes, and women used supplements more often than men.

Considering elite Canadian athletes participating at the Atlanta and Sydney Olympics, respectively, prevalence rates of 69% and 74% were reported. Vitamin use was most common (58-66%), whereas nutritional supplements were used commonly (Atlanta: 35% men, 43% women, Sydney: 43% men, 51% women) often consisting of creatine, and/or amino acid supplementation. Based on results overal, it appears that supplementation increases with the competitive level of the sport and is somewhat higher for female athletes.

There are 3 specific categories: supplement use to build muscle for aesthetic purposes or body image concerns, and supplement use to lose weight for aesthetic purposes, body image concerns, or health.

There is a behaviouristic explanation possible for the use of supplements in that athletes’ use may lead to reward contingencies (eg: more prize money), thereby driving future behaviour. Similarly, supplements that build muscle or promote weight loss could produce rewarding results. Also, there are undoubtedly social influences at work considering that coaches, parents, athletic trainers, and peers have been reported to be influential regarding the decision to take supplements.

Operant conditioning: focuses on the manner in which our behaviour and action are influenced by the outcomes that follow them. Derived from the behaviouristic research tradition, the sum of findings in this area dictate that some outcomes/stimuli strengthen the behaviour that preceded them, and others weaken the likelihood of the behaviour that preceded them. Outcomes that increase the likelihood of behaviour are known as reinforcers, and those that decrease the likelihood of behaviour are known as punishment. In the present context, prize money, praise from others, or rewards due to improved performance are reinforcers of the behaviour to take supplements. Because most legal supplements likely would not produce dramatic sport performance gains, muscle mass gains, or weight loss results, perhaps the best explanation for use is found in other theories. Behaviouralistic explanations, however, might be highly applicable considering the use of illegal substance such as steroid use.

When trying to change attitudes about whether supplements are good or bad, it is likely that some individuals are more persuasive than others. Individuals are more persuasive if they are seen as trustworthy or having pertinent expertise. The supplement industry often uses exactly such a strategy to help market their products. University research and “expert” sport and exercise nutritionists are increasingly being used to support the efficacy of performance enhancing, muscle building, or weight loss supplements. Consumers should consider, however, that a company may contract with 3 universities to test their products and report only the results of the positive outcomes in their advertisements.

Achievement Goal theory: within this theory, it is assumed that there are differences in the manners by which athletes judge their competence or success. Individuals who are task-oriented tent to judge their success on the basis of personal improvement, whereas those who are ego-oriented tent to judge their success on the basis of social comparison with others. Task-oriented individuals typically view personal ability as changeable and exhibit strong motivation regardless of their perceptions of competence. Those who are ego-oriented, tend to view ability as more static and are thus more likely to engage in questionable strategies to ensure winning and would be expected to engage in more frequent doping activities and perhaps a greater willingness to use supplementation strategies.

Body image and eating disorders: Obesity rates have dramatically increased over the past few decades, a similar increase in the ideal body size has not occurred in the female population. In fact, the “ideal” waist size for females may have become unhealthily small. Because of these 2 contradictory trends, it is no surprise that the use of supplements targeted at weight loss has increased dramatically during this same time period. The nation is getting heavier and feeling worse about it, especially the female segment. In one survey, research showed that among women at risk for eating disorders approximately 65% engage in frequent use of “diet pills”.

Adonis complex: There is an opposing set of preoccupation afflicting males termed the Adonis complex, which seems to be afflicting boys and men more specifically during the last few decades. These individuals may compulsively lift weights or exercise, engage in steroid abuse, elect to undergo plastic surgery, or suffer from eating disorders or body dysmorphic disorders, all in attempts to gain muscle mass, change fat distribution, or otherwise alter their appearance to some ideal.

In one of the seminal works in this area, Pop and colleagues interview 108 bodybuilders (55 steroid users and 53 non-steroid users) and found a higher than normal incidence of anorexia nervosa (2.8%) and a surprising incidence of ‘reverse anorexia’ (8.3%), with some of the respondents believing that they appeared small and weak despite their large, muscular appearance. The latter finding indicated that some of these bodybuilders exhibited unusual preoccupations with their appearance. Such pathological preoccupation with muscularity has been termed muscle dysmorphia. As an important link to potential supplement use or abuse, in Pope and colleagues’ research all of the bodybuilders indicating muscle dysmorphia (then termed ‘reverse anorexia’) were in the sample of steroid users, and many reported that the symptoms of muscle dysmorphia were a factor that led to steroid use. As an indication of the degree of this obsession, individuals with this affliction have reported lifting weights for hours a day while sacrificing other areas of their lives. For example, some of these individuals reported earning degrees in business, law or medicine but did not pursue a career or gave up a career in these areas because they needed more time to lift weights. Recent research indicates that bodybuilders suffering from higher levels of muscle dysmorphia are more likely to experience body dissatisfaction, social physique anxiety, and use muscle-building or fat-reducing targeted supplements. At present there is some evidence that supplement use is greater among individuals with muscle dissatisfaction or muscle dysmorphia. It also appears that illegal supplement use may accompany muscle dysmorphia as data indicate that 1 million or more US males have used these substances primarily to promote muscle growth as opposed to performance enhancement purposes. Finally, it should also be noted that research find that some men have become preoccupied with fat, as opposed to muscle, and, in contrast to attempting to gain weight, may develop eating disorders. This suggests that body image concerns among males may drive some to attempt obsessively to build muscle mass whereas others may obsessively work to lose fat. In both cases it is likely that legal or illegal supplementation is a common means to achieve such goals. 

An abstract from “Psychology of Supplements in Sport and Exercise – Motivational Antecedents and Biobehavioral Outcomes” by Rafer Lutz and Shawn Arent

IMG_4264

Superfoods

Superfoods have the ability to tremendously increase the vital force and energy of one’s body. They are an optimal choice to improve overall health:

  • boost the immune system,
  • elevate ‘feel good’ hormones, such as serotonin,
  • enhance stamina,
  • cleanse and fight free radicals,
  • lower bloating and inflammation.

Cacao – raw chocolate:

Is the highest antioxidant food on the planet. Number 1 source of antioxidants, magnesium, iron, manganese, and chromium. It is also high in theobromin (cardiovascular support) and anandamide (‘feel good’ chemical). Raw chocolate improves cardiovascular health, builds strong bones, is a natural aphrodisiac, elevates your mood and energy, and increases longevity.

Goji berries (wolfberries):

It contains 18 kinds of amino acids, up to 21 trace minerals, high amounts of antioxidants, iron, B and E vitamins, and many other nutrients.

Maca:

Increases energy, endurance, strength and libido.

Hemp seeds (eaten raw):

Contains 33% pure protein, and is rich in iron, amino acids, Vitamin E as well as Omega 3 and GLA.

Spirulina:

Provides a wast array of minerals, trace elements, phytonutrients and enzymes.

Bee products (pollen and honey):

Bee pollen contains nearly all Vitamin Bs, especially Vitamin B9 (folate), and all essential amino acids.

Honey in its raw, unfiltered and organic state, is rich in minerals, antioxidants, probiotics, and enzymes.

Camu berry:

It is the highest Vitamin C source on the planet. Great for rebuilding tissue, purifying blood, and enhancing immunity and energy. It is one of the best anti-depressants, immune building and eye-nourishing superfoods in the world.

Sea vegetables:

Rich in life-giving nutrients drawn in from the ocean and sun, sea vegetables help remove heavy metals, detoxify the body of radioactive iodine, provide numerous trace minerals, regulate immunity and decrease the risk of cancer.

Seaweeds are excellent for thyroid, immune system, adrenals and hormone function.

Medicinal mushrooms:

High in polysaccharides and immune-enhancing components, medicinal mushrooms like Shiitake and Reishi, are one of the most intelligent adaptogenic superfoods on the planet.

Cruciferous vegetables:

Such as broccoli, brussels sprouts, cabbage and cauliflower are high in antioxidants, and sulphur, which enhances the body’s production of glutathione.

IMG_3474

Bye Bye Gold’s

Another year has passed. I arrived to Egypt end of March, started lecturing at Gold’s Gym Academy in April and got a job at Gold’s Gym Egypt in May. It was a very happy period indeed. I felt loved and appreciated. Then the months passed and things have changed. It is not shocking at all that most people are not what they show themselves to be. With time and age you get used to it and you just move on. In the past few months it has escalated to a level where I started feeling stressed and pushed. It will always be beyond me why certain people feel that they have to do things to try and make others feel less or as miserable as they are, although they haven’t got much to show up for themselves. Ignorance? Jealousy? Or just simply bad manners? Not important. It’s not worth any more space in my life or on my blog.

The only thing that is important that I have put an end to it yesterday – and I feel free again. It’s like a breath of fresh air, a big relief for me. Finally I can focus on something that I actually like doing: body building and teaching body building/fitness to people who are interested and want to learn.

Finally I am free to do body building seminars anywhere and I can have my private clients as soon as I sort out a gym to train them. I am also available for any guest posing or guest appearance in any gym in Cairo/Egypt. Please get in touch for more details: tamara@tamaramakar.me

Watch this space because big things are going to happen very soon. I have a few competitions lined up for 2015, and I also have my plan B.

Keep people in your life that truly love you, motivate you, encourage you, inspire you, enhance you and make you happy and get rid of the negative shit – job is done, look forward to a happier chapter in my life.

IMG_9267

IMG_9268